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PREFACE

Through study of this text, the reader will develop a com-
prehensive understanding of the basic techniques of mod-
ern electronic circuit design, analog and digital, discrete
and integrated. Even though most readers may not ulti-
mately be engaged in the design of integrated circuits (ICs)
themselves, a thorough understanding of the internal circuit
structure of ICs is prerequisite to avoiding many pitfalls that
prevent the effective and reliable application of integrated
circuits in system design.

Digital electronics has evolved to be an extremely im-
portant area of circuit design, but it is included almost as
an afterthought in many introductory electronics texts. We
present a more balanced coverage of analog and digital cir-
cuits. The writing integrates the authors’ extensive indus-
trial backgrounds in precision analog and digital design with
their many years of experience in the classroom. A broad
spectrum of topics is included, and material can easily be
selected to satisfy either a two-semester or three-quarter
sequence in electronics.

IN THIS EDITION
This edition continues to update the material to achieve
improved readability and accessibility to the student. In
addition to general material updates, a number of specific
changes have been included.

In Part I, the concept of velocity saturation from
Chapter 2 is reinforced with the addition of the Unified
MOS model of Rabaey and Chandrakasan in the Field
Effect Transistors chapter, and the impact of velocity lim-
itations on digital and analog circuits is now a recurrent
topic throughout Parts II and III with discussion, examples,
and new problems.

Part II has had flip-flops and latches included with other
basic CMOS logic circuits in Chapter 7. Flash memory has
become a pervasive technology. A significant addition to
Chapter 8 is an introduction to flash memory technology
and circuitry with accompanying problems. In Chapter 9,
the material on T 2 L has been reduced somewhat since
its importance is waning, whereas a short discussion of

Positive ECL (PECL) has been added. The material that
was removed is still accessible on the web.

As noted above, Part III discusses biasing and distortion
in the velocity saturated regime along with new problems. A
section on Darlington pairs is a new addition to Chapter 15.
Improved examples of offset voltage calculations and revi-
sion of the material on the bandgap reference are included
in Chapter 16. In Chapter 17 a discussion of gate resistance
in FETs now mirrors that of base resistance in the BJT. An
expanded discussion of the frequency response of comple-
mentary emitter followers has been added. The discussion
of the impact of the frequency-dependent current gain of
the FET has also been enhanced to include both the input
and output impedances of the source follower configuration.
Finally, the discussion of the classic and pervasive Jones
Mixer has been updated. An additional example of offset
voltage calculation has been added to Chapter 18 along with
enhanced discussion of MOS Op Amp compensation.

Other important elements include:

At least 35 percent revised or new problems.
New PowerPoint slides are available from McGraw-

Hill.
Popular digital features Connect and LearnSmart and

SmartBook.
The structured problem-solving approach continues

throughout the examples.
The popular Electronics-in-Action features have been

revised and expanded to include IEEE Societies,
Historical Development of SPICE, Body Sensor
Networks, Jones Mixer, Advanced CMOS Tech-
nology, Flash Memory Growth, Low Voltage Dif-
ferential Signaling (LVDS), and Fully Differential
Amplifiers.

Chapter openers enhance the readers understanding
of historical developments in electronics. Design notes
highlight important ideas that the circuit designer should
remember. The World Wide Web is viewed as an integral
extension of the text.

xx
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Features of the book are outlined below.

The Structured Problem-Solving Approach is used
throughout the examples.

Electronics-in-Action features in each chapter.

Chapter openers highlighting developments in the field
of electronics.

Design Notes and emphasis on practical circuit design.

Broad use of SPICE throughout the text and examples.

Integrated treatment of device modeling in SPICE.

Numerous Exercises, Examples, and Design Examples.

Large number of problems.

Integrated web materials.

Placing the digital portion of the book first is also bene-
ficial to students outside of electrical engineering, partic-
ularly computer engineering or computer science majors,
who may only take the first course in a sequence of elec-
tronics courses.

The material in Part II deals primarily with the internal
design of logic gates and storage elements. A comprehen-
sive discussion of NMOS and CMOS logic design is pre-
sented in Chapters 6 and 7, and a discussion of memory
cells and peripheral circuits appears in Chapter 8. Chap-
ter 9 on bipolar logic design includes discussion of ECL,
CML and TTL. However, the material on bipolar logic has
been reduced in deference to the import of MOS technol-
ogy. This text does not include any substantial design at
the logic block level, a topic that is fully covered in digital
design courses.

Parts I and II of the text deal only with the large-signal
characteristics of the transistors. This allows readers to be-
come comfortable with device behavior and i-v character-
istics before they have to grasp the concept of splitting cir-
cuits into different pieces (and possibly different topolo-
gies) to perform dc and ac small-signal analyses. (The con-
cept of a small-signal is formally introduced in Part III,
Chapter 13.)

Although the treatment of digital circuits is more exten-
sive than most texts, more than 50 percent of the material in
the book, Part III, still deals with traditional analog circuits.
The analog section begins in Chapter 10 with a discussion of
amplifier concepts and classic ideal op-amp circuits. Chap-
ter 11 presents a detailed discussion of nonideal op amps,
and the classic feedback topologies and Chapter 12 presents
a range of op-amp applications. Chapter 13 presents a com-
prehensive development of the small-signal models for the
diode, BJT, and FET. The hybrid-pi model and pi-models
for the BJT and FET are used throughout.

Chapter 14 provides in-depth discussion of single-
stage amplifier design and multistage ac coupled amplifiers.
Coupling and bypass capacitor design is also covered in
Chapter 14. Chapter 15 discusses dc coupled multistage
amplifiers and introduces prototypical op amp circuits.
Chapter 16 continues with techniques that are important
in IC design including electronic current sources, current
mirrors and active loads, and the bandgap reference, and
studies the classic 741 operational amplifier.

Chapter 17 develops the high-frequency models for the
transistors and presents a detailed discussion of analysis of
high-frequency circuit behavior. The important short-circuit
and open-circuit time-constant techniques for estimating
the dominant low- and high-frequency poles are introduced
and covered in detail in Chapter 17. Chapter 18 presents
examples of transistor feedback amplifiers and explores
their stability and compensation. A discussion of high-
frequency LC, negative gm , and crystal oscillators concludes
Chapter 18.

DESIGN
Design remains a difficult issue in educating engineers.
The use of the well-defined problem-solving methodology
presented in this text can significantly enhance the students
ability to understand issues related to design. The design
examples assist in building an understanding of the design
process.

Part II launches directly into the issues associated
with the design of NMOS and CMOS logic gates. The
effects of device and passive-element tolerances are dis-
cussed throughout the text. In today’s world, low-power,
low-voltage design, often supplied from batteries, is play-
ing an increasingly important role. Logic design examples
concentrate on lower supply levels. The use of the computer,
including MATLAB®, spreadsheets, or standard high-level
languages to explore design options is a thread that contin-
ues throughout the text.

Methods for making design estimates and decisions
are stressed throughout the analog portion of the text. Ex-
pressions for amplifier behavior are simplified beyond the
standard hybrid-pi model expressions whenever appropri-
ate. For example, the expression for the voltage gain of an
amplifier in most texts is simply written as |Av| = gm RL ,
which tends to hide the power supply voltage as the funda-
mental design variable. Rewriting this expression in approx-
imate form as gm RL

∼= 10VCC for the BJT, or gm RL
∼= VDD

for the FET, explicitly displays the dependence of amplifier
design on the choice of power supply voltage and provides a
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simple first-order design estimate for the voltage gain of the
common-emitter and common-source amplifiers. The gain
advantage of the BJT stage is also clear. These approxima-
tion techniques and methods for performance estimation
are included as often as possible. Comparisons and design
tradeoffs between the properties of BJTs and FETs are in-
cluded throughout Part III.

Worst-case and Monte-Carlo analysis techniques are
introduced at the end of the first chapter. These are not top-
ics traditionally included in undergraduate courses. How-
ever, the ability to design circuits in the face of wide
component tolerances and variations is a key component
of electronic circuit design, and the design of circuits
using standard components and tolerance assignment are
discussed in examples and included in many problems.

PROBLEMS AND INSTRUCTOR
SUPPORT
Specific design problems, computer problems, and SPICE
problems are included at the end of each chapter. Design
problems are indicated by , computer problems are in-

dicated by , and SPICE problems are indicated by .
The problems are keyed to the topics in the text with the
more difficult or time-consuming problems indicated by *
and **. An Instructor’s Manual containing solutions to all
the problems is available to instructors from the authors.
In addition, the graphs and figures are available as Power-
Point files and can be retrieved on the Instructor’s Resources
section of Connect, along with various web materials ref-
erenced in the textbook for students. Instructor notes are
available as PowerPoint slides.

To access the Instructor Resources through Connect,
you must first contact your McGraw-Hill Learning Tech-
nology Representative to obtain a password. If you do
not know your McGraw-Hill representative, please go to
www.mhhe.com/rep, to find your representative.

Once you have your password, please go to con-
nect.mheducation.com, and log in. Click on the course for
which you are using Microelectronic Circuit Design, 5e. If
you have not added a course, click “Add Course,” and se-
lect “Engineering-Electrical and Computer” from the drop-
down menu. Select this textbook and click “Next.”

Once you have added the course, click on the “Library”
link, and then click “Instructor Resources.”

McGRAW-HILL CONNECT®

The online resources for this edition include McGraw-Hill
Connect, a web-based assignment and assessment platform

that can help students to perform better in their course-
work and to master important concepts. With Connect, in-
structors can deliver assignments, quizzes, and tests eas-
ily online. Students can practice important skills at their
own pace and on their own schedule. Ask your McGraw-
Hill Representative for more detail and check it out at
www.mcgrawhillconnect.com/engineering.

McGRAW-HILL LEARNSMART®

McGraw-Hill LearnSmart® is an adaptive learning system
designed to help students learn faster, study more efficiently,
and retain more knowledge for greater success. Through a
series of adaptive questions, LearnSmart pinpoints concepts
the student does not understand and maps out a personal-
ized study plan for success. It also lets instructors see ex-
actly what students have accomplished, and it features a
built-in assessment tool for graded assignments. Ask your
McGraw-Hill representative for more information, and visit
www.mhlearnsmart.com for a demonstration.

McGRAW-HILL SMARTBOOK™

Powered by the intelligent and adaptive LearnSmart engine,
SmartBook is the first and only continuously adaptive read-
ing experience available today. Distinguishing what stu-
dents know from what they dont, and honing in on con-
cepts they are most likely to forget, SmartBook personal-
izes content for each student. Reading is no longer a passive
and linear experience but an engaging and dynamic one,
where students are more likely to master and retain impor-
tant concepts, coming to class better prepared. SmartBook
includes powerful reports that identify specific topics and
learning objectives students need to study. These valuable
reports also provide instructors insight into how students
are progressing through textbook content and are useful
for identifying class trends, focusing precious class time,
providing personalized feedback to students, and tailoring
assessment.

How does SmartBook work? Each SmartBook con-
tains four components: Preview, Read, Practice, and
Recharge. Starting with an initial preview of each chapter
and key learning objectives, students read the material and
are guided to topics for which they need the most practice
based on their responses to a continuously adapting diag-
nostic. Read and practice continue until SmartBook directs
students to recharge important material they are most likely
to forget to ensure concept mastery and retention.
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ELECTRONIC TEXTBOOK OPTION
This text is offered through CourseSmart for both instruc-
tors and students. CourseSmart is an online resource where
students can purchase the complete text online at almost half
the cost of a traditional text. Purchasing the eTextbook al-
lows students to take advantage of CourseSmart’s web tools
for learning, which include full text search, notes and high-
lighting, and email tools for sharing notes between class-
mates. To learn more about CourseSmart options, contact
your sales representative or visit www.CourseSmart.com.

McGRAW-HILL CREATE™

With McGraw-Hill Create, you can easily rearrange chap-
ters, combine material from other content sources, and
quickly upload content you have written, like your course
syllabus or teaching notes. Find the content you need in
Create by searching through thousands of leading McGraw-
Hill textbooks. Arrange your book to fit your teaching style.
Create even allows you to personalize your books appear-
ance by selecting the cover and adding your name, school,
and course information. Order a Create book and youll re-
ceive a complimentary print review copy in 3 to 5 business
days or a complimentary electronic review copy (eComp)
via e-mail in minutes. Go to www.mcgrawhillcreate.com
today and register to experience how McGraw-Hill Create
empowers you to teach your students your way.

COSMOS
Complete Online Solutions Manual Organization System
(COSMOS). Professors can benefit from McGraw-Hill’s
COSMOS electronic solutions manual. COSMOS enables
instructors to generate a limitless supply of problem mate-
rial for assignment, as well as transfer and integrate their
own problems into the software. For additional information,
contact your McGraw-Hill sales representative.

COMPUTER USAGE AND SPICE
The computer is used as a tool throughout the text. The au-
thors firmly believe that this means more than just the use
of the SPICE circuit analysis program. In today’s comput-
ing environment, it is often appropriate to use the computer
to explore a complex design space rather than to try to re-
duce a complicated set of equations to some manageable
analytic form. Examples of the process of setting up equa-
tions for iterative evaluation by computer through the use
of spreadsheets, MATLAB, and/or standard high-level lan-
guage programs are illustrated in several places in the text.

MATLAB is also used for Nyquist and Bode plot generation
and is very useful for Monte Carlo analysis.

On the other hand, SPICE is used throughout the text.
Results from SPICE simulation are included throughout and
numerous SPICE problems are to be found in the prob-
lem sets. Wherever helpful, a SPICE analysis is used with
most examples. This edition continues to emphasize the
differences and utility of the dc, ac, transient, and trans-
fer function analysis modes in SPICE. A discussion of
SPICE device modeling is included following the introduc-
tion to each semiconductor device, and typical SPICE model
parameters are presented with the models. The vast major-
ity of the problems in this text can easily be checked using
SPICE, and this approach is always recommended to stu-
dents in search of answers.
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CHAPTER-BY-CHAPTER SUMMARY

PART I—SOLID-STATE ELECTRONICS
AND DEVICES
Chapter 1 provides a historical perspective on the field of
electronics beginning with vacuum tubes and advancing to
giga-scale integration and its impact on the global economy.
Chapter 1 also provides a classification of electronic signals
and a review of some important tools from network anal-
ysis, including a review of the ideal operational amplifier.
Because developing a good problem-solving methodology
is of such import to an engineer’s career, the comprehen-
sive Structured Problem Solving Approach is used to help
the students develop their problem solving skills. The struc-
tured approach is discussed in detail in the first chapter and
used in all the subsequent examples in the text. Component
tolerances and variations play an extremely important role
in practical circuit design, and Chapter 1 closes with intro-
ductions to tolerances, temperature coefficients, worst-case
design, and Monte Carlo analysis.

Chapter 2 deviates from the recent norm and discusses
semiconductor materials including the covalent-bond and
energy-band models of semiconductors. The chapter in-
cludes material on intrinsic carrier density, electron and hole
populations, n- and p-type material, and impurity doping.
Mobility, resistivity, and carrier transport by both drift and
diffusion are included as topics. Velocity saturation is dis-
cussed, and an introductory discussion of microelectronic
fabrication has been merged with Chapter 2.

Chapter 3 introduces the structure and i-v character-
istics of solid-state diodes. Discussions of Schottky diodes,
variable capacitance diodes, photo-diodes, solar cells, and
LEDs are also included. This chapter introduces the con-
cepts of device modeling and the use of different levels
of modeling to achieve various approximations to reality.
The SPICE model for the diode is discussed. The con-
cepts of bias, operating point, and load-line are all intro-
duced, and iterative mathematical solutions are also used to
find the operating point with MATLAB and spreadsheets.
Diode applications in rectifiers are discussed in detail and a

discussion of the dynamic switching characteristics of
diodes is also presented.

Chapter 4 discusses MOS and junction field-effect
transistors, starting with a qualitative description of the
MOS capacitor. Models are developed for the FET i-v char-
acteristics, and a complete discussion of the regions of op-
eration of the device is presented. Body effect is included.
MOS transistor performance limits including scaling, cut-
off frequency, and subthreshold conduction are discussed
as well as basic �-based layout methods. Biasing circuits
and load-line analysis are presented. The concept of veloc-
ity saturation from Chapter 2 is reinforced with the addition
of the Unified MOS model of Rabaey and Chandrakasan to
Chapter 4. FET SPICE models and model parameters are
discussed in Chapter 4.

Chapter 5 introduces the bipolar junction transistor
and presents a heuristic development of the Transport (sim-
plified Gummel-Poon) model of the BJT based upon su-
perposition. The various regions of operation are discussed
in detail. Common-emitter and common-base current gains
are defined, and base transit-time, diffusion capacitance and
cutoff frequency are all discussed. Bipolar technology and
physical structure are introduced. The four-resistor bias cir-
cuit is discussed in detail. The SPICE model for the BJT and
the SPICE model parameters are discussed in Chapter 5.

PART II—DIGITAL ELECTRONICS
Chapter 6 begins with a compact introduction to digital
electronics. Terminology discussed includes logic levels,
noise margins, rise-and-fall times, propagation delay, fan
out, fan in, and power-delay product. A short review of
Boolean algebra is included. Chapter 6 follows the histor-
ical evolution of NMOS logic gates focusing on the de-
sign of saturated-load, and depletion-load circuit families.
The impact of body effect on MOS logic circuit design
is discussed in detail. The concept of reference inverter
scaling is developed and employed to affect the design of

xxv
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other inverters, NAND gates, NOR gates, and complex
logic functions throughout Chapters 6 and 7. Capacitances
in MOS circuits are discussed, and methods for estimating
the propagation delay and power-delay product of NMOS
logic are presented. Details of several of the propagation
delay analyses are moved to the MCD Connect site. The
impact of velocity limitations on digital and analog circuits
is now a recurrent topic throughout Parts II and III with
discussion, examples, and new problems. Detailed anal-
ysis of the pseudo NMOS logic gate has been moved to
the web.

CMOS represents today’s most important integrated
circuit technology, and Chapter 7 provides an in-depth
look at the design of CMOS logic gates including invert-
ers, NAND and NOR gates, and complex logic gates. The
CMOS designs are based on simple scaling of a reference
inverter design. Noise margin and latchup are discussed as
well as a comparison of the power-delay products of various
MOS logic families. Cascade buffer design is discussed in
Chapter 7. A discussion of BiCMOS logic circuitry appears
in Chapter 9 after bipolar logic is introduced.

Chapter 8 ventures into the design of memory and
storage circuits, including the six-transistor, four-transistor,
and one-transistor memory cells. Basic sense-amplifier cir-
cuits are introduced as well as the peripheral address and
decoding circuits needed in memory designs. An introduc-
tion to flash memory technology and circuitry is added with
accompanying problems.

Chapter 9 discusses bipolar logic circuits including
emitter-coupled logic and transistor-transistor logic. The
use of the differential pair as a current switch and the large-
signal properties of the emitter follower are introduced. An
introduction to CML, widely used in SiGe design, follows
the ECL discussion. Operation of the BJT as a saturated
switch is included and followed by a discussion of various
forms of TTL. An introduction to BiCMOS logic concludes
the chapter on bipolar logic.

PART III—ANALOG ELECTRONICS
Chapter 10 provides a succinct introduction to analog elec-
tronics. The concepts of voltage gain, current gain, power
gain, and distortion are developed and have been merged
on a “just-in-time” basic with the discussion of the classic
ideal operational amplifier circuits that include the invert-
ing, noninverting, summing, and difference amplifiers and
the integrator and differentiator. Much care has been taken
to be consistent in the use of the notation that defines these
quantities as well as in the use of dc, ac, and total signal

notation throughout the book. Bode plots are reviewed and
amplifiers are classified by frequency response. MATLAB
is utilized as a tool for producing Bode plots. SPICE simu-
lation using built-in SPICE models is introduced.

Chapter 11 focuses on a comprehensive discussion of
the characteristics and limitations of real operational am-
plifiers including the effects of finite gain and input resis-
tance, nonzero output resistance, input offset voltage, input
bias and offset currents, output voltage and current limits,
finite bandwidth, and common-mode rejection. A consis-
tent loop-gain analysis approach is used to study the four
classic feedback configurations, and Blackman’s theorem is
utilized to find input and output resistances of closed-loop
amplifiers. The important successive voltage and current
injection technique for finding loop-gain is included in
Chapter 11. Relationships between the Nyquist and Bode
techniques are explicitly discussed. Stability of first-,
second- and third-order systems is discussed, and the con-
cepts of phase and gain margin are introduced. Relation-
ships between Nyquist and Bode techniques are explicitly
discussed. A section concerning the relationship between
phase margin and time domain response is included. The
macro model concept is introduced and the discussion of
SPICE simulation of op-amp circuits using various levels
of models continues in Chapter 11.

Chapter 12 covers a wide range of operational am-
plifier applications that include multistage amplifiers, the
instrumentation amplifier, and continuous time and discrete
time active filters. Cascade amplifiers are investigated in-
cluding a discussion of the bandwidth of multistage ampli-
fiers. An introduction to D/A and A/D converters appears
in this chapter. The Barkhausen criterion for oscillation are
presented and followed by a discussion of op-amp-based si-
nusoidal oscillators. Nonlinear circuits applications includ-
ing rectifiers, Schmitt triggers, and multivibrators conclude
the material in Chapter 12.

Chapter 13 begins the general discussion of linear
amplification using the BJT and FET as C-E and C-S am-
plifiers. Biasing for linear operation and the concept of
small-signal modeling are both introduced, and small-signal
models of the diode, BJT, and FET are all developed. The
limits for small-signal operation are all carefully defined.
The use of coupling and bypass capacitors and inductors to
separate the ac and dc designs is explored. The important
10VCC and VDD design estimates for the voltage gain of the
C-E and C-S amplifiers are introduced, and the role of the
transistor’s intrinsic gain in bounding circuit performance is
discussed. The role of Q-point design on power dissipation
and signal range is also introduced.
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Chapter 14 proceeds with an in-depth comparison of
the characteristics of single-transistor amplifiers, including
small-signal amplitude limitations. Appropriate points for
signal injection and extraction are identified, and amplifiers
are classified as inverting amplifiers (C-E, C-S), nonin-
verting amplifiers (C-B, C-G), and followers (C-C, C-D).
The treatment of MOS and bipolar devices is merged from
Chapter 14 on, and design tradeoffs between the use of the
BJT and the FET in amplifier circuits is an important thread
that is followed through all of Part III. A detailed discus-
sion of the design of coupling and bypass capacitors and
the role of these capacitors in controlling the low frequency
response of amplifiers appears in this chapter.

Chapter 15 explores the design of multistage direct
coupled amplifiers. An evolutionary approach to multistage
op amp design is used. MOS and bipolar differential ampli-
fiers are first introduced. Subsequent addition of a second
gain stage and then an output stage convert the differential
amplifiers into simple op amps. Class A, B, and AB oper-
ation are defined. Electronic current sources are designed
and used for biasing of the basic operational amplifiers.
Discussion of important FET-BJT design tradeoffs are in-
cluded wherever appropriate. A section on Darlington pairs
is a new addition to Chapter 15.

Chapter 16 introduces techniques that are of particular
import in integrated circuit design. A variety of current mir-
ror circuits are introduced and applied in bias circuits and as
active loads in operational amplifiers. A wealth of circuits
and analog design techniques are explored through the de-
tailed analysis of the classic 741 operational amplifier. The
Brokaw bandgap reference and Gilbert analog multiplier
are introduced in Chapter 16.

Chapter 17 discusses the frequency response of ana-
log circuits. The behavior of each of the three categories of
single-stage amplifiers (C-E/C-S, C-B/C-G, and C-C/C-D)
is discussed in detail, and BJT behavior is contrasted with
that of the FET. The frequency response of the transistor
is discussed, and the high frequency, small-signal models
are developed for both the BJT and FET. Miller multipli-
cation is used to obtain estimates of the lower and upper
cutoff frequencies of complex multistage amplifiers. Gain-
bandwidth products and gain-bandwidth tradeoffs in design
are discussed. Cascode amplifier frequency response, and
tuned amplifiers are included in this chapter. The important
short-circuit and open-circuit time-constant techniques for
estimating the dominant low- and high-frequency poles are
covered in detail.

Because of the renaissance and pervasive use of RF
circuits, the introductory section on RF amplifiers includes

shunt-peaked and tuned amplifiers. A discussion of gate
resistance in FETs now mirrors that of base resistance in
the BJT. Expanded discussion of the frequency response of
complementary emitter followers has been added. The dis-
cussion of the impact of the frequency-dependent current
gain of the FET has also been enhanced to include both the
input and output impedances of the source follower con-
figuration. Material on mixers includes passive and active
single- and double-balanced mixers and the widely used
Jones Mixer.

Chapter 18 presents detailed examples of feedback
as applied to transistor amplifier circuits. The loop-gain
analysis approach introduced in Chapter 11 is used to find
the closed-loop amplifier gain of various amplifiers, and
Blackman’s theorem is utilized to find input and output
resistances of closed-loop amplifiers.

Amplifier stability is also discussed in Chapter 18, and
Nyquist diagrams and Bode plots (with MATLAB) are used
to explore the phase and gain margin of amplifiers. Basic
single-pole op amp compensation is discussed, and the unity
gain-bandwidth product is related to amplifier slew rate.
Design of op amp compensation to achieve a desired phase
margin has been expanded. The discussion of transistor os-
cillator circuits includes the Colpitts, Hartley and negative
Gm configurations. Crystal oscillators are also discussed.

Three Appendices include tables of standard compo-
nent values (Appendix A), summary of the device models
and sample SPICE parameters (Appendix B) and review
of two-port networks (Appendix C). Data sheets for repre-
sentative solid-state devices and operational amplifiers are
available via the WWW. A new table has been added to
Appendix C to help relate various two-port parameters that
often appear in specification sheets to the FET and BJT
model parameters that appear in the text.

Flexibility
The chapters are designed to be used in a variety of differ-
ent sequences, and there is more than enough material for a
two-semester or three-quarter sequence in electronics. One
can obviously proceed directly through the book. On the
other hand, the material has been written so that the BJT
chapter can be used immediately after the diode chapter if so
desired (i.e., a 1-2-3-5-4 chapter sequence). At the present
time, the order actually used at Auburn University is:

1. Introduction
2. Solid-State Electronics
3. Diodes
4. FETs
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6. Digital Logic
7. CMOS Logic
8. Memory
5. The BJT
9. Bipolar Logic

10–18. Analog in Sequence

The chapters have also been written so that Part II, Digital
Electronics, can be skipped, and Part III, Analog Electron-
ics, can be used directly after completion of the coverage

of the solid-state devices in Part I. If so desired, many of
the quantitative details of the material in Chapter 2 may be
skipped. In this case, the sequence would be

1. Introduction
2. Solid-State Electronics
3. Diodes
4. FETs
5. The BJT

10–18. Analog in Sequence
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CHA PTER G O A L S
• Present a brief history of electronics
• Quantify the explosive development of integrated

circuit technology
• Discuss initial classification of electronic signals
• Review important notational conventions and

concepts from circuit theory
• Introduce methods for including tolerances in circuit

analysis
• Present the problem-solving approach used in this

text

November 2017 will be the 70th anniversary of the 1947 dis-
covery of the bipolar transistor by John Bardeen and Walter
Brattain at Bell Laboratories, a seminal event that marked
the beginning of the semiconductor age (see Figs. 1.1
and 1.2). The invention of the transistor and the subsequent
development of microelectronics have done more to shape
the modern era than any other event. The transistor and
microelectronics have reshaped how business is transacted,
machines are designed, information moves, wars are fought,
people interact, and countless other areas of our lives.

This textbook develops the basic operating principles
and design techniques governing the behavior of the de-
vices and circuits that form the backbone of much of the
infrastructure of our modern world. This knowledge will
enable students who aspire to design and create the next

Figure 1.1 John Bardeen, William Shockley, and Walter
Brattain in Brattain's laboratory in 1948.
Reprinted with permission of Alacatel-Lucent USA Inc.

Figure 1.2 The first germanium bipolar transistor.
Reprinted with permission of Alacatel-Lucent USA Inc.

generation of this technological revolution to build a solid
foundation for more advanced design courses. In addition,
students who expect to work in some other technology area
will learn material that will help them understand micro-
electronics, a technology that will continue to have impact
on how their chosen field develops. This understanding will
enable them to fully exploit microelectronics in their own
technology area. Now let us return to our short history of
the transistor.

3



4 Chapter 1 Introduction to Electronics

After the discovery of the transistor, it was but a few
months until William Shockley developed a theory that de-
scribed the operation of the bipolar junction transistor. Only
10 years later, in 1956, Bardeen, Brattain, and Shockley re-
ceived the Nobel Prize in physics for the discovery of the
transistor.

In June 1948 Bell Laboratories held a major press con-
ference to announce the discovery. In 1952 Bell Laborato-
ries, operating under legal consent decrees, made licenses
for the transistor available for the modest fee of $25,000 plus
future royalty payments. About this time, Gordon Teal, an-
other member of the solid-state group, left Bell Laboratories

to work on the transistor at Geophysical Services, Inc.,
which subsequently became Texas Instruments (TI). There
he made the first silicon transistors, and TI marketed the
first all-transistor radio. Another early licensee of the tran-
sistor was Tokyo Tsushin Kogyo, which became the Sony
Company in 1955. Sony subsequently sold a transistor radio
with a marketing strategy based on the idea that everyone
could now have a personal radio; thus was launched the
consumer market for transistors. A very interesting account
of these and other developments can be found in [1, 2] and
their references.

Activity in electronics began more than a century ago with the first radio transmissions in 1895
by Marconi, and these experiments were followed after only a few years by the invention of the first
electronic amplifying device, the triode vacuum tube. In this period, electronics—loosely defined as
the design and application of electron devices—has had such a significant impact on our lives that
we often overlook just how pervasive electronics has really become. One measure of the degree of
this impact can be found in the gross domestic product (GDP) of the world. In 2012 the world GDP
was approximately U.S. $72 trillion, and of this total more than 10 percent was directly traceable to
electronics. See Table 1.1 [3–5].

We commonly encounter electronics in the form of cellular phones, radios, televisions, and
audio equipment, but electronics can be found even in seemingly mundane appliances such as
vacuum cleaners, washing machines, and refrigerators. Wherever one looks in industry, electronics
is found. The corporate world obviously depends heavily on data processing systems to manage its
operations. In fact, it is hard to see how the computer industry could have evolved without the use of
its own products. In addition, the design process depends ever more heavily on computer-aided design
(CAD) systems, and manufacturing relies on electronic systems for process control—in petroleum
refining, automobile tire production, food processing, power generation, and so on.

T A B L E 1.1
Estimated Worldwide Electronics Market

CATEGORY SHARE (%)

Data processing hardware 22
Data processing software and services 17
Professional electronics 10
Telecommunications 9
Consumer electronics 9
Active components 9
Passive components 7
Computer integrated manufacturing 5
Instrumentation 5
Office electronics 3
Medical electronics 2
Automotive 2
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1.1 A BRIEF HISTORY OF ELECTRONICS: FROM VACUUM TUBES
TO GIGA-SCALE INTEGRATION

Because most of us have grown up with electronic products all around us, we often lose perspective
of how far the industry has come in a relatively short time. At the beginning of the twentieth century,
there were no commercial electron devices, and transistors were not invented until the late 1940s!
Explosive growth was triggered by first the commercial availability of the bipolar transistor in the late
1950s, and then the realization of the integrated circuit (IC) in 1961. Since that time, signal processing
using electron devices and electronic technology has become a pervasive force in our lives.

Table 1.2 lists a number of important milestones in the evolution of the field of electronics. The
Age of Electronics began in the early 1900s with the invention of the first electronic two-terminal
devices, called diodes. The vacuum diode, or diode vacuum tube, was invented by Fleming in
1904; in 1906 Pickard created a diode by forming a point contact to a silicon crystal. (Our study of
electron devices begins with the introduction of the solid-state diode in Chapter 3.)

Deforest’s invention of the three-element vacuum tube known as the triode was an extremely
important milestone. The addition of a third element to a diode enabled electronic amplification
to take place with good isolation between the input and output ports of the device. Silicon-based
three-element devices now form the basis of virtually all electronic systems. Fabrication of tubes
that could be used reliably in circuits followed the invention of the triode by a few years and enabled
rapid circuit innovation. Amplifiers and oscillators were developed that significantly improved radio
transmission and reception. Armstrong invented the super heterodyne receiver in 1920 and FM
modulation in 1933. Electronics developed rapidly during World War II, with great advances in the
field of radio communications and the development of radar. Although first demonstrated in 1930,
television did not begin to come into widespread use until the 1950s.

An important event in electronics occurred in 1947, when John Bardeen, Walter Brattain,
and William Shockley at Bell Telephone Laboratories invented the bipolar transistor.1 Although
field-effect devices had actually been conceived by Lilienfeld in 1925, Heil in 1935, and Shockley
in 1952 [2], the technology to produce such devices on a commercial basis did not yet exist. Bipolar
devices, however, were rapidly commercialized.

Then in 1958, the nearly simultaneous invention of the integrated circuit (IC) by Kilby at Texas
Instruments and Noyce and Moore at Fairchild Semiconductor produced a new technology that would
profoundly change our lives. The miniaturization achievable through IC technology made available
complex electronic functions with high performance at low cost. The attendant characteristics of high
reliability, low power, and small physical size and weight were additional important advantages.

In 2000, Jack St. Clair Kilby received a share of the Nobel Prize for the invention of the inte-
grated circuit. In the mind of the authors, this was an exceptional event as it represented one of the
first awards to an electronic technologist.

Most of us have had some experience with personal computers, and nowhere is the impact of
the integrated circuit more evident than in the area of digital electronics. For example, 4-gigabit (Gb)
dynamic memory chips, similar to those in Fig. 1.3(c), contain more than 4 billion transistors. A
128-Gb flash memory chip stores 2 or 3 bits per memory cell using multilevel storage techniques and
has more than 17 billion transistors in the memory array alone, not counting address decoding and
sensing circuitry. Creating this much memory using individual vacuum tubes [depicted in Fig. 1.3(a)]
or even discrete transistors [shown in Fig. 1.3(b)] would be almost inconceivable (see Prob. 1.9).

Levels of Integration
The dramatic progress of integrated circuit miniaturization is shown graphically in Figs. 1.4 and
1.5. The complexities of memory chips and microprocessors have grown exponentially with time.

1 The term transistor is said to have originated as a contraction of “transfer resistor,” based on the voltage-controlled resistance of
the characteristics of the MOS transistor.
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T A B L E 1.2
Milestones in Electronics

YEAR EVENT

1874 Ferdinand Braun invents the solid-state rectifier.
1884 American Institute of Electrical Engineers (AIEE) formed.
1895 Marconi makes first radio transmissions.
1904 Fleming invents diode vacuum tube—Age of Electronics begins.
1906 Pickard creates solid-state point-contact diode (silicon).
1906 Deforest invents triode vacuum tube (audion).

1910–1911 “Reliable” tubes fabricated.
1912 Institute of Radio Engineers (IRE) founded.

1907–1927 First radio circuits developed from diodes and triodes.
1920 Armstrong invents super heterodyne receiver.
1925 TV demonstrated.
1925 Lilienfeld files patent application on the field-effect device.

1927–1936 Multigrid tubes developed.
1933 Armstrong invents FM modulation.
1935 Heil receives British patent on a field-effect device.
1940 Radar developed during World War II—TV in limited use.
1947 Bardeen, Brattain, and Shockley at Bell Laboratories invent

bipolar transistors.
1950 First demonstration of color TV.
1952 Shockley describes the unipolar field-effect transistor.
1952 Commercial production of silicon bipolar transistors begins

at Texas Instruments.
1952 Ian Ross and George Dacey demonstrate the junction field-effect

transistor.
1956 Bardeen, Brattain, and Shockley receive Nobel Prize for invention

of bipolar transistors.
1958 Integrated circuit developed simultaneously by Kilby at Texas

Instruments and Noyce and Moore at Fairchild Semiconductor.
1961 First commercial digital IC available from Fairchild Semiconductor.
1963 AIEE and IRE merge to become the Institute of Electrical and

Electronic Engineers (IEEE)
1967 First semiconductor RAM (64 bits) discussed at the IEEE

International Solid-State Circuits Conference (ISSCC).
1968 First commercial IC operational amplifier—the ␮A709—introduced

by Fairchild Semiconductor.
1970 One-transistor dynamic memory cell invented by Dennard at IBM.
1970 Low-loss optical fiber invented.
1971 4004 microprocessor introduced by Intel.
1972 First 8-bit microprocessor—the 8008—introduced by Intel.
1974 First commercial 1-kilobit memory chip developed.
1974 8080 microprocessor introduced.
1978 First 16-bit microprocessor developed.
1984 Megabit memory chip introduced.
1985 Flash memory introduced at ISSCC.
1987 Erbium doped, laser-pumped optical fiber amplifiers demonstrated.
1995 Experimental gigabit memory chip presented at the IEEE ISSCC.
2000 Alferov, Kilby, and Kromer share the Nobel Prize in physics for

optoelectronics, invention of the integrated circuit, and heterostructure
devices, respectively.

2009 Kao shares one-half of the 2009 Nobel Prize in physics for fiber optic communication
using light with Boyle and Smith for invention of the Charge-Coupled Device (CCD).
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(a) (b)

(d)(c)

Figure 1.3 Comparison of (a) vacuum tubes, (b) individual transistors, (c) integrated circuits in dual-in-line packages (DIPs),
and (d) ICs in surface mount packages.
Source: (a) Courtesy ARRL Handbook for Radio Amateurs, 1992
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Figure 1.4 Microprocessor complexity versus time.
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Figure 1.5 DRAM feature size versus year.

In over four decades since 1970, the number of transistors on a microprocessor chip has increased
by a factor of one million as depicted in Fig. 1.4. Similarly, memory density has grown by a factor
of more than 10 million from a 64-bit chip in 1968 to the announcement of 4-Gb chip production in
the late 2009.

Since the commercial introduction of the integrated circuit, these increases in density have
been achieved through a continued reduction in the minimum line width, or minimum feature size,
that can be defined on the surface of the integrated circuit (see Fig. 1.5). Today most corporate semi-
conductor laboratories around the world are actively working on deep submicron processes with
feature sizes below 25 nm—less than one five-thousandth the diameter of a human hair.
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As the miniaturization process has continued, a series of commonly used abbreviations has
evolved to characterize the various levels of integration. Prior to the invention of the integrated
circuit, electronic systems were implemented in discrete form. Early ICs, with fewer than 100 com-
ponents, were characterized as small-scale integration, or SSI. As density increased, circuits became
identified as medium-scale integration (MSI, 100–1000 components/chip), large-scale integra-
tion (LSI, 103–104 components/chip), and very-large-scale integration (VLSI, 104–109 compo-
nents/chip). Today discussions focus on giga-scale integration (GSI, above 109 components/chip)
and beyond.

E L E C T R O N I C S I N A C T I O N

Cellular Phone Evolution
The impact of technology scaling is ever present in our daily lives. One example appears
visually in the pictures of cellular phone evolution below. Early mobile phones were often
large and had to be carried in a relatively large pouch (hence the term “bag phone”). The
next generation of analog phones could easily fit in your hand, but they had poor battery life
caused by their analog communications technology. Implementations of third- and fourth-
generation digital cellular technology are considerably smaller and have much longer battery
life. As density continues to increase, additional functions such as cameras, GPS, and Wifi are
integrated with the digital phone.

(a) (b) (c)

A decade of cellular phone evolution: (a) early Uniden “bag phone,” (b) Nokia analog phone, and (c) Apple iPhone.
Source: (c) c© George Frey/Getty Images

Cell phones also represent excellent examples of the application of mixed-signal inte-
grated circuits that contain both analog and digital circuitry on the same chip. ICs in the cell
phone contain analog radio frequency receiver and transmitter circuitry, analog-to-digital and
digital-to-analog converters, CMOS logic and memory, and power conversion circuits.

1.2 CLASSIFICATION OF ELECTRONIC SIGNALS

The signals that electronic devices are designed to process can be classified into two broad categories:
analog and digital. Analog signals can take on a continuous range of values, and thus represent
continuously varying quantities; purely digital signals can appear at only one of several discrete
levels. Examples of these types of signals are described in more detail in the next two subsections,
along with the concepts of digital-to-analog and analog-to-digital conversion, which make possible
the interface between the two systems.
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Figure 1.6 A time-varying binary digital signal.

1.2.1 DIGITAL SIGNALS
When we speak of digital electronics, we are most often referring to electronic processing of binary
digital signals, or signals that can take on only one of two discrete amplitude levels as illustrated in
Fig. 1.6. The status of binary systems can be represented by two symbols: a logical 1 is assigned to
represent one level, and a logical 0 is assigned to the second level.2 The two logic states generally
correspond to two separate voltages—VH and VL—representing the high and low amplitude levels,
and a number of voltage ranges are in common use. Although VH = 5 V and VL = 0 V represented
the primary standard for many years, these have given way to lower voltage levels because of power
consumption and semiconductor device limitations. Systems employing VH = 3.3, down to 1 V or
less with VL = 0 V, are now used in many types of electronics.

However, binary voltage levels can also be negative or even bipolar. One high-performance
logic family called ECL uses VH = −0.8 V and VL = −2.0 V, and the early standard RS-422 and
RS-232 communication links between a small computer and its peripherals used VH = +12 V and
VL = −12 V. In addition, the time-varying binary signal in Fig. 1.6 could equally well represent the
amplitude of a current or that of an optical signal being transmitted down a fiber in an optical digital
communication system. Recent USB and Firewire standards returned to the use of a single positive
supply voltage.

Part Two of this text discusses the design of a number of families of digital circuits using various
semiconductor technologies. These include CMOS, NMOS, and PMOS logic3, which use field-effect
transistors, and the TTL and ECL families, which are based on bipolar transistors.

1.2.2 ANALOG SIGNALS
Although quantities such as electronic charge and electron spin are discrete, much of the physical
world is really analog in nature. Our senses of vision, hearing, smell, taste, and touch are all analog
processes. Analog signals directly represent variables such as temperature, humidity, pressure, light
intensity, or sound—all of which may take on any value, typically within some finite range. In reality,
classification of digital and analog signals is largely one of perception. If we look at a digital signal
similar to the one in Fig. 1.6 with an oscilloscope, we find that it actually makes a continuous transition
between the high and low levels. The signal cannot make truly abrupt transitions between two levels.
Designers of high-speed digital systems soon realize that they are really dealing with analog signals.
The time-varying voltage or current plotted in Fig. 1.7(a) could be the electrical representation of
temperature, flow rate, or pressure versus time, or the continuous audio output from a microphone.
Some analog transducers produce output voltages in the range of 0 to 5 or 0 to 10 V, whereas others
are designed to produce an output current that ranges between 4 and 20 mA. At the other extreme,
signals brought in by a radio antenna can be as small as a fraction of a microvolt.

To process the information contained in these analog signals, electronic circuits are used to se-
lectively modify the amplitude, phase, and frequency content of the signals. In addition, significant

2 This assignment facilitates the use of Boolean algebra, reviewed in Chapter 6.
3 For now, let us accept these initials as proper names without further definition. The details of each of these circuits are

developed in Part Two.




